summaryrefslogtreecommitdiff
path: root/main.c
blob: ea75c328d463aee527825a31799ee808b6b9f736 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
#include <stdbool.h>
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include <pthread.h>

#include "vector.h"

#include <SDL/SDL.h>
#include <SDL/SDL_video.h>

#define WIDTH 40
#define HEIGHT 30

#define MAX(a, b) ((a>b)?(a):(b))
#define MIN(a, b) ((a<b)?(a):(b))
#define SQR(a) ((a)*(a))
#define SIGN(x) ((x)<0?-1:1)

#define MAX_BOUNCES 200
#define MIN_BOUNCES 2
#define MOVE_FACTOR .15
#define TARGET_MS 50

#define PPMOUT

#define MOUSELOOK

struct rgb_t { unsigned char r, g, b; };

struct object_t {
    enum { SPHERE, PLANE, TRI } type;
    union {
        struct { vector center; scalar radius; } sphere;
        struct { vector point, normal; } plane;
        struct { vector points[3]; } tri;
    };
    struct rgb_t color;
    int specularity; /* 0-255 */
};

struct light_t {
    vector position;
    scalar intensity;
};

struct scene_t {
    struct rgb_t bg;
    struct object_t *objects;
    size_t n_objects;
    struct light_t *lights;
    size_t n_lights;
    scalar ambient;
};

struct camera_t {
    vector origin;
    vector direction; /* direction to center of camera */
    scalar fov_x, fov_y; /* radians */
};

/* { o, d } form a ray */
/* point of intersection is *t * d units away */
inline bool object_intersects(const struct object_t *obj, vector o, vector d, scalar *t)
{
    assert(o.type == RECT);
    vect_to_rect(&d);
    assert(d.type == RECT);
    switch(obj->type)
    {
    case SPHERE:
    {
        scalar a = SQR(d.rect.x) + SQR(d.rect.y) + SQR(d.rect.z),
            b = 2 * ((o.rect.x - obj->sphere.center.rect.x) * d.rect.x +
                     (o.rect.y - obj->sphere.center.rect.y) * d.rect.y +
                     (o.rect.z - obj->sphere.center.rect.z) * d.rect.z),
            c = SQR(o.rect.x - obj->sphere.center.rect.x) +
                SQR(o.rect.y - obj->sphere.center.rect.y) +
                SQR(o.rect.z - obj->sphere.center.rect.z) - SQR(obj->sphere.radius);
        scalar disc = b*b - 4*a*c;
        if(disc < 0)
        {
            //printf("no intersection (%f)\n", disc);
            return false;
        }
        scalar t1 = (-b - sqrt(disc)) / (2*a), t2 = (-b + sqrt(disc)) / (2*a);
        /* both are negative */
        if(t1 < 0 && t2 < 0)
        {
            //printf("no intersection\n");
            return false;
        }
        /* one is negative */
        if(t1 * t2 < 0)
        {
            //printf("camera is inside sphere (%f, %f)!\n", t1, t2);
            *t = MAX(t1, t2);
            return true;
        }
        vector prod = d;
        prod = vect_mul(prod, t2);
        prod = vect_add(prod, o);
        //printf("ray from (%f, %f, %f) intersects sphere at point %f, %f, %f (%f)\n", o->rect.x, o->rect.y, o->rect.z, prod.rect.x, prod.rect.y, prod.rect.z, vect_abs(&prod));
        *t = MIN(t1, t2);
        return true;
    }
    case PLANE:
    {
        scalar denom = vect_dot(obj->plane.normal, d);
        if(!denom)
            return false;
        scalar t1 = vect_dot(obj->plane.normal, vect_sub(obj->plane.point, o)) / denom;
        if(t1 <= 0)
            return false;
        *t = t1;
        return true;
    }
    case TRI:
    {
        vector u = vect_sub(obj->tri.points[1], obj->tri.points[0]);
        vector v = vect_sub(obj->tri.points[2], obj->tri.points[0]);
        vector normal = vect_cross(u, v);
        if(vect_abs(normal) == 0)
        {
            //printf("degenerate triangle\n");
            return false;
        }
        scalar denom = vect_dot(normal, d);
        /* doesn't intersect plane of triangle */
        if(!denom)
        {
            //printf("parallel\n");
            return false;
        }
        scalar t1 = vect_dot(normal, vect_sub(obj->tri.points[0], o)) / denom;
        /* behind camera */
        if(t1 <= 0)
        {
            //printf("behind camera\n");
            return false;
        }

        vector pt = vect_add(vect_mul(d, t1), o);
        vect_to_rect(&pt);
        scalar uu, uv, vv, wu, wv;
        uu = vect_dot(u, u);
        uv = vect_dot(u, v);
        vv = vect_dot(v, v);
        vector w = vect_sub(pt, obj->tri.points[0]);
        wu = vect_dot(w, u);
        wv = vect_dot(w, v);
        denom = SQR(uv) - uu * vv;
        scalar s1 = (uv * wv - vv * wu) / denom;
        if(s1 < 0. || s1 > 1.)
        {
            //printf("not inside\n");
            return false;
        }
        scalar s2 = (uv * wu - uu * wv) / denom;
        if(s2 < 0. || (s1 + s2) > 1.)
        {
            //printf("not inside\n");
            return false;
        }
        *t = t1;
        return true;
    }
    }
}

vector normal_at_point(vector pt, const struct object_t *obj)
{
    vector normal;
    switch(obj->type)
    {
    case SPHERE:
        normal = vect_sub(pt, obj->sphere.center);
        break;
    case PLANE:
        normal = obj->plane.normal;
        break;
    case TRI:
        normal = vect_cross(vect_sub(obj->tri.points[1], obj->tri.points[2]),
                            vect_sub(obj->tri.points[3], obj->tri.points[2]));
        break;
    default:
        assert(false);
    }
    return normal;
}

/* return the direction of the reflected ray */
vector reflect_ray(vector pt, vector d, vector normal, const struct object_t *obj)
{
    scalar c = -2 * vect_dot(d, normal);
    vector reflected = normal;
    reflected = vect_mul(reflected, c);
    reflected = vect_add(reflected, d);
    return reflected;
}

struct rgb_t blend(struct rgb_t a, struct rgb_t b, unsigned char alpha)
{
    struct rgb_t ret;
    unsigned char r1, g1, b1;
    ret.r = (((int)a.r * alpha) + ((int)b.r * (255 - alpha))) / 255;
    ret.g = (((int)a.g * alpha) + ((int)b.g * (255 - alpha))) / 255;
    ret.b = (((int)a.b * alpha) + ((int)b.b * (255 - alpha))) / 255;
    return ret;
}

static const struct object_t *scene_intersections(const struct scene_t *scene,
                                                  vector orig, vector d, scalar *dist, const struct object_t *avoid)
{
    *dist = -1;
    const struct object_t *obj = NULL;
    /* check intersections */
    for(int i = 0; i < scene->n_objects; ++i)
    {
        /* avoid intersections with the same object */
        if(avoid == scene->objects + i)
            continue;
        scalar t;
        if(object_intersects(scene->objects + i, orig, d, &t))
        {
            if(*dist < 0 || t < *dist)
            {
                *dist = t;
                obj = scene->objects + i;
            }
        }
    }
    return obj;
}

#define ABS(x) ((x)<0?-(x):(x))

struct rgb_t trace_ray(const struct scene_t *scene, vector orig, vector d, int max_iters, const struct object_t *avoid)
{
    vector copy = d;
    vect_to_sph(&copy);

    struct rgb_t primary = blend((struct rgb_t) {0, 0x96, 0xff}, (struct rgb_t) { 0xfe, 0xfe, 0xfe },
                                 ABS(copy.sph.elevation * 2 / M_PI * 255));
    scalar hit_dist; /* distance from camera in terms of d */
    const struct object_t *hit_obj = scene_intersections(scene, orig, d, &hit_dist, avoid);

    struct rgb_t reflected = {0, 0, 0};
    int specular = 255;

    /* by default */
    scalar shade_total = 1.0;

    if(hit_obj)
    {
        //printf("pow!\n");
        primary = hit_obj->color;

        /* shade */

        vector pt = d;
        pt = vect_mul(pt, hit_dist);
        pt = vect_add(pt, orig);

        vector normal = normal_at_point(pt, hit_obj);

        shade_total = 0;

        for(int i = 0; i < scene->n_lights; ++i)
        {
            /* get vector to light */
            vector light_dir = vect_sub(scene->lights[i].position, pt);

            scalar light_dist = vect_abs(light_dir);

            light_dir = vect_normalize(light_dir);

            /* see if light is occluded */
            scalar nearest;
            const struct object_t *obj = scene_intersections(scene, pt, light_dir, &nearest, hit_obj);

            if(obj && nearest < light_dist)
                continue;

            scalar shade = vect_dot(normal, light_dir);
            if(shade > 0)
                shade_total += shade * scene->lights[i].intensity * 1 / (SQR(light_dist));
        }

        if(shade_total > 1)
            shade_total = 1;

        specular = 255 - hit_obj->specularity;
        /* reflections */
        if(specular != 255 && max_iters > 0)
        {
            vector ref = reflect_ray(pt, d, normal, hit_obj);
            reflected = trace_ray(scene, pt, ref, max_iters - 1, hit_obj);
        }
    }

    struct rgb_t mixed = blend(primary, reflected, specular);

    scalar diffuse = 1 - scene->ambient;
    mixed.r *= (scene->ambient + diffuse * shade_total);
    mixed.g *= (scene->ambient + diffuse * shade_total);
    mixed.b *= (scene->ambient + diffuse * shade_total);

    return mixed;
}

void render_lines(unsigned char *fb, int w, int h,
                  const struct scene_t *scene,
                  const struct camera_t *cam,
                  int start, int end, int bounces, int worker)
{
    scalar scale_x = cam->fov_x / w, scale_y = cam->fov_y / h;

    vector direction = cam->direction;
    vect_to_sph(&direction);

    for(int y = 0; y < h; ++y)
    {
        for(int x = start; x < end; ++x)
        {
            /* trace a ray from the camera into the scene */
            /* figure out how to rotate the offset vector to suit the
             * current pixel */

            /* rot in range of [-fov / 2, fov / 2) */
            scalar rot_x = (x - w / 2) * scale_x, rot_y = (y - h / 2) * scale_y;

            /* rotate the offset vector */

            vector d = direction;
            d.sph.elevation -= rot_y;
            d.sph.azimuth += rot_x;

            vect_to_rect(&d);

            //printf("(%d, %d) maps to (%f, %f, %f)\n", x, y, d.rect.x, d.rect.y, d.rect.z);

            /* cam->origin and d now form the camera ray */

            struct rgb_t color = trace_ray(scene, cam->origin, d, bounces, NULL);

#ifdef PPMOUT
            fb[y * w * 3 + 3 * x] = color.r;
            fb[y * w * 3 + 3 * x + 1] = color.g;
            fb[y * w * 3 + 3 * x + 2] = color.b;
#else
            fb[y * w * 3 + 3 * x] = color.b;
            fb[y * w * 3 + 3 * x + 1] = color.g;
            fb[y * w * 3 + 3 * x + 2] = color.r;
#endif

        }
#ifdef PPMOUT
        printf("Worker %d: %d%% (%d/%d)\n", worker, 100 * y / h, y, h);
#endif
    }
}

struct renderinfo_t {
    unsigned char *fb;
    int w, h;
    const struct scene_t *scene;
    const struct camera_t *cam;
    int start, end;
    int bounces;
    int worker;
};

void *thread(void *ptr)
{
    struct renderinfo_t *info = ptr;
    render_lines(info->fb, info->w, info->h, info->scene, info->cam, info->start, info->end, info->bounces, info->worker);
    return NULL;
}

void render_scene(unsigned char *fb, int w, int h,
                  const struct scene_t *scene,
                  const struct camera_t *cam, int n_threads, int n_bounces)
{
    struct renderinfo_t *info = malloc(sizeof(struct renderinfo_t) * n_threads);
    pthread_t *threads = malloc(sizeof(pthread_t) * n_threads);
    for(int i = 0; i < n_threads; ++i)
    {
        info[i].fb = fb;
        info[i].w = w;
        info[i].h = h;
        info[i].scene = scene;
        info[i].cam = cam;
        info[i].start = w * i / n_threads;
        info[i].end = w * (i + 1) / n_threads;
        info[i].bounces = n_bounces;
        info[i].worker = i;
        pthread_create(threads + i, NULL, thread, info + i);
    }

    for(int i = 0; i < n_threads; ++i)
        pthread_join(threads[i], NULL);

    free(info);
}

scalar rand_norm(void)
{
    return rand() / (scalar)RAND_MAX;
}

int main()
{
    struct scene_t scene;
    scene.bg.r = 0x87;
    scene.bg.g = 0xce;
    scene.bg.b = 0xeb;
    scene.ambient = .5;

    struct object_t sph[8];

#if 1
    sph[0].type = SPHERE;
    sph[0].sphere.center = (vector) { RECT, {0, 1, 1 } };
    sph[0].sphere.radius = 1;
    sph[0].color = (struct rgb_t){0, 0, 0xff};
    sph[0].specularity = 0xf0;

    sph[1].type = SPHERE;
    sph[1].sphere.center = (vector) { RECT, {0, 1, -1 } };
    sph[1].sphere.radius = 1;
    sph[1].color = (struct rgb_t){0xff, 0, 0};
    sph[1].specularity = 40;

    sph[2].type = SPHERE;
    sph[2].sphere.center = (vector) { RECT, {0, 1, -3 } };
    sph[2].sphere.radius = 1;
    sph[2].color = (struct rgb_t){0xff, 0xff, 0xff};
    sph[2].specularity = 0xf0;

    sph[3].type = PLANE;
    sph[3].plane.point = (vector) { RECT, {0, 0, 100 } };
    sph[3].plane.normal = (vector) { RECT, {0, 1, 0 } };
    sph[3].color = (struct rgb_t) {0, 0xff, 0};
    sph[3].specularity = 0;
#endif

    sph[4].type = TRI;
    sph[4].tri.points[0] = (vector) { RECT, {0, 0, 0 } };
    sph[4].tri.points[1] = (vector) { RECT, {0, 5, 0 } };
    sph[4].tri.points[2] = (vector) { RECT, {0, 0, 5 } };
    sph[4].color = (struct rgb_t) {0xff, 0, 0xff};
    sph[4].specularity = 0;

    sph[5].type = TRI;
    sph[5].tri.points[0] = (vector) { RECT, {0, 5, 5 } };
    sph[5].tri.points[1] = (vector) { RECT, {0, 5, 0 } };
    sph[5].tri.points[2] = (vector) { RECT, {0, 0, 5 } };
    sph[5].color = (struct rgb_t) {0xff, 0, 0xff};
    sph[5].specularity = 0;

    sph[6].type = TRI;
    sph[6].tri.points[0] = (vector) { RECT, {10, 0, -5 } };
    sph[6].tri.points[1] = (vector) { RECT, {5, 5, 0 } };
    sph[6].tri.points[2] = (vector) { RECT, {0, 0, -5 } };
    sph[6].color = (struct rgb_t) {0xff, 0, 0xff};
    sph[6].specularity = 0xe0;
#if 0
    sph[4].type = PLANE;
    sph[4].plane.point = (vector) { RECT, {10, 0, 0 } };
    sph[4].plane.normal = (vector) { RECT, {-1, 0, 0 } };
    sph[4].color = (struct rgb_t) {224, 223, 91};
    sph[4].specularity = 0xf0;

    sph[5].type = PLANE;
    sph[5].plane.point = (vector) { RECT, {-10, 0, 0 } };
    sph[5].plane.normal = (vector) { RECT, {1, 0, 0 } };
    sph[5].color = (struct rgb_t) {224, 223, 91};
    sph[5].specularity = 0xf0;


    sph[4].type = PLANE;
    sph[4].plane.point = (vector) { RECT, {0, 0, -10 } };
    sph[4].plane.normal = (vector) { RECT, {0, 0, 1 } };
    sph[4].color = (struct rgb_t) {224, 223, 91};
    sph[4].specularity = 0xf0;

    sph[5].type = PLANE;
    sph[5].plane.point = (vector) { RECT, {0, 0, 10 } };
    sph[5].plane.normal = (vector) { RECT, {0, 0, -1 } };
    sph[5].color = (struct rgb_t) {224, 223, 91};
    sph[5].specularity = 0xf0;
#endif

    /* distribute evenly in a sphere of r = 1 */
    struct light_t lights[50];
    for(int i = 0; i < 50; ++i)
    {
        lights[i].position = vect_add((vector) { RECT, {5, 10, 0} },
                                      (vector) { SPH, { .sph.r = rand_norm(),
                                                  .sph.elevation = 2 * M_PI * (rand_norm() - .5),
                                                  .sph.azimuth = 4 * M_PI * (rand_norm() - .5) } } );
        lights[i].intensity = 4;
    }

    scene.objects = sph;
    scene.n_objects = 7;
    scene.lights = lights;
    scene.n_lights = 50;

    struct camera_t cam;
    cam.origin = (vector){ RECT, {-5, 2, -1} };
    cam.direction = (vector){ RECT, {0, 0, 1} };
    cam.fov_x = M_PI / 2;
    cam.fov_y = M_PI / 2 * HEIGHT / WIDTH;

    unsigned char *fb = malloc(WIDTH * HEIGHT * 3);

#ifdef PPMOUT
    render_scene(fb, WIDTH, HEIGHT, &scene, &cam, 2, MAX_BOUNCES);
    FILE *f = fopen("test.ppm", "w");
    fprintf(f, "P6\n%d %d\n%d\n", WIDTH, HEIGHT, 255);
    fwrite(fb, WIDTH * HEIGHT, 3, f);
    fclose(f);
    free(fb);
    return 0;

#else
    /* auto-adjusting */
    int bounces = MIN_BOUNCES;

    SDL_Init(SDL_INIT_VIDEO);
    SDL_Surface *screen = SDL_SetVideoMode(WIDTH, HEIGHT, 24, SDL_HWSURFACE);
    SDL_EnableKeyRepeat(500, 50);

    int ts = SDL_GetTicks();

    while(1)
    {
        //lights[0].position.rect.z += .05;
#ifdef MOUSELOOK
        /* mouse look */
        int x, y;
        unsigned mouse = SDL_GetMouseState(&x, &y);
        x -= WIDTH / 2;
        y -= HEIGHT / 2;
        vect_to_sph(&cam.direction);
        cam.direction.sph.azimuth += M_PI/10 * SIGN(x)*SQR((scalar)x / WIDTH);
        cam.direction.sph.elevation += M_PI/10 * SIGN(y)*SQR((scalar)y / HEIGHT);
#endif

        render_scene(fb, WIDTH, HEIGHT, &scene, &cam, 2, bounces);
        memcpy(screen->pixels, fb, WIDTH * HEIGHT * 3);
        SDL_UpdateRect(screen, 0, 0, 0, 0);

        int now = SDL_GetTicks();
        int dt = now - ts;

        if(dt < TARGET_MS && bounces < MAX_BOUNCES)
        {
            /* too fast! */
            bounces *= 2;
            if(bounces > MAX_BOUNCES)
                bounces = MAX_BOUNCES;
        }
        else if(dt > TARGET_MS && bounces > MIN_BOUNCES)
        {
            bounces /= 2;
            if(bounces < MIN_BOUNCES)
                bounces = MIN_BOUNCES;
        }


        printf("%d bounces\n", bounces);

        ts = now;

        SDL_Event e;
        //printf("camera at %f, %f, %f\n", cam.origin.rect.x, cam.origin.rect.y, cam.origin.rect.z);
        while(SDL_PollEvent(&e))
        {
            switch(e.type)
            {
            case SDL_QUIT:
                free(fb);
                return 0;
            case SDL_KEYDOWN:
                switch(e.key.keysym.sym)
                {
                case SDLK_ESCAPE:
                    free(fb);
                    SDL_Quit();
                    return 0;
                case SDLK_UP:
                    cam.origin.rect.y += .1;
                    break;
                case SDLK_DOWN:
                    cam.origin.rect.y -= .1;
                    break;
                case SDLK_a:
                {
                    vector tmp = cam.direction;
                    vect_to_sph(&tmp);
                    tmp.sph.azimuth -= M_PI/2;
                    cam.origin = vect_add(cam.origin, vect_mul(tmp, MOVE_FACTOR));
                    break;
                }
                case SDLK_d:
                {
                    vector tmp = cam.direction;
                    vect_to_sph(&tmp);
                    tmp.sph.azimuth += M_PI/2;
                    cam.origin = vect_add(cam.origin, vect_mul(tmp, MOVE_FACTOR));
                    break;
                }
                case SDLK_w:
                    cam.origin = vect_add(cam.origin, vect_mul(cam.direction, MOVE_FACTOR));
                    break;
                case SDLK_s:
                    cam.origin = vect_sub(cam.origin, vect_mul(cam.direction, MOVE_FACTOR));
                    break;
                case SDLK_MINUS:
                    cam.fov_x += M_PI/36;
                    cam.fov_y = cam.fov_x * HEIGHT/WIDTH;
                    break;
                case SDLK_EQUALS:
                    cam.fov_x -= M_PI/36;
                    cam.fov_y = cam.fov_x * HEIGHT/WIDTH;
                    break;
                case SDLK_SPACE:
                    cam.origin.rect.y += .1;
                    break;
                case SDLK_LSHIFT:
                    cam.origin.rect.y -= .1;
                    break;
                case SDLK_LEFT:
                {
                    vect_to_sph(&cam.direction);
                    cam.direction.sph.azimuth -= M_PI/180;
                    break;
                }
                case SDLK_RIGHT:
                {
                    vect_to_sph(&cam.direction);
                    cam.direction.sph.azimuth += M_PI/180;
                    break;
                }
                }
                break;
            }
        }
    }
#endif
}