aboutsummaryrefslogtreecommitdiff
path: root/trusted_module.c
blob: b3db5b27f53b927d02b3b992248645b178b6e979 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
/* An implementation of the trusted module T as described in Mohanty
 * et al. As this code is to execute on a general-purpose computer, no
 * guarantees can be made as to the tamper-resistance of the module,
 * but instead this serves as a proof-of-concept. */

#include <assert.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>

#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <openssl/rand.h>
#include <openssl/sha.h>

#include "crypto.h"
#include "service_provider.h"
#include "trusted_module.h"

struct user_key {
    const void *key;
    size_t len;
};

struct trusted_module {
    hash_t root; /* root of IOMT */

    /* shared secret with user */
    struct user_key *user_keys;
    size_t n_users;

    /* secret for signing self-certificates */
    unsigned char secret[32];
};

static void tm_setroot(struct trusted_module *tm, hash_t newroot)
{
    //printf("New root: ");
    tm->root = newroot;
    //dump_hash(tm->root);
}

struct trusted_module *tm_new(const void *key, size_t keylen)
{
    struct trusted_module *tm = calloc(1, sizeof(struct trusted_module));

    if(!RAND_bytes(tm->secret, sizeof(tm->secret)))
    {
        free(tm);
        return NULL;
    }

    /* debugging */
    memset(tm->secret, 0, sizeof(tm->secret));

    tm->user_keys = calloc(1, sizeof(*tm->user_keys));
    tm->n_users = 1;
    tm->user_keys[0].key = key;
    tm->user_keys[0].len = keylen;

    /* initialize with a node of (1, 0, 1) in the tree */
    struct iomt_node boot = (struct iomt_node) { 1, 1, hash_null };

    tm_setroot(tm, merkle_compute(hash_node(&boot), NULL, NULL, 0));

    return tm;
}

static hash_t cert_sign(const struct trusted_module *tm, const struct tm_cert *cert)
{
    return hmac_sha256(cert, sizeof(*cert), tm->secret, sizeof(tm->secret));
}

static bool cert_verify(const struct trusted_module *tm, const struct tm_cert *cert, hash_t hmac)
{
    hash_t calculated = cert_sign(tm, cert);
    return hash_equals(calculated, hmac);
}

struct tm_cert tm_cert_node_update(const struct trusted_module *tm,
                                   hash_t orig, hash_t new,
                                   const hash_t *comp, const int *orders, size_t n,
                                   hash_t *hmac)
{
    struct tm_cert cert;
    cert.type = NU;
    cert.nu.orig_node = orig;
    cert.nu.new_node = new;

    cert.nu.orig_root = cert.nu.new_root = merkle_compute(orig, comp, orders, n);

    if(!hash_equals(orig, new))
        cert.nu.new_root = merkle_compute(new, comp, orders, n);

    *hmac = cert_sign(tm, &cert);

    return cert;
}

static const char *tm_error = NULL;
static void tm_seterror(const char *error)
{
    tm_error = error;
}

const char *tm_geterror(void)
{
    if(tm_error)
        return tm_error;
    return "success";
}

/* combine two NU certificates, untested. */
struct tm_cert tm_cert_combine(const struct trusted_module *tm,
                               const struct tm_cert *nu1, hash_t hmac1,
                               const struct tm_cert *nu2, hash_t hmac2,
                               hash_t *hmac_out)
{
    if(!nu1 || !nu2)
    {
        tm_seterror("null certificate");
        return cert_null;
    }
    if(nu1->type != NU || nu2->type != NU)
    {
        tm_seterror("wrong certificate type");
        return cert_null;
    }
    if(!cert_verify(tm, nu1, hmac1) || !cert_verify(tm, nu2, hmac2))
    {
        tm_seterror("improper cert authentication");
        return cert_null;
    }

    if(hash_equals(nu1->nu.new_node, nu2->nu.orig_node) &&
       hash_equals(nu1->nu.new_root, nu2->nu.orig_root))
    {
        struct tm_cert cert;
        cert.type = NU;
        cert.nu.orig_node = nu1->nu.orig_node;
        cert.nu.orig_root = nu1->nu.orig_root;
        cert.nu.new_node = nu2->nu.new_node;
        cert.nu.new_root = nu2->nu.new_root;

        *hmac_out = cert_sign(tm, &cert);
        return cert;
    }
    else
    {
        tm_seterror("hashes are not of the form a->b, b->c");
        return cert_null;
    }
}

/* Let ve = h(b, b', wb). */
/* Let ve' = h(b, a, wb). */
/* Let vi' = h(a, b', 0). */
/* nu_encl should certify that given [ve is child of y], then [ve' is child of y'] */
/* nu_ins should certify that given [0 is child of y'], then [vi' is child of y''] */
/* this function will then issue a certificate verifying that y and
 * y'' are equivalent roots, indicating that they differ only in y''
 * having an additional placeholder node with index a */
struct tm_cert tm_cert_equiv(const struct trusted_module *tm,
                             const struct tm_cert *nu_encl, hash_t hmac_encl,
                             const struct tm_cert *nu_ins,  hash_t hmac_ins,
                             const struct iomt_node *encloser,
                             uint64_t a, hash_t *hmac_out)
{
    if(!nu_encl || !nu_ins)
    {
        tm_seterror("null certificate");
        return cert_null;
    }
    if(nu_encl->type != NU || nu_ins->type != NU)
    {
        tm_seterror("one or both certificates are not NU certificates");
        return cert_null;
    }
    if(!cert_verify(tm, nu_encl, hmac_encl) || !cert_verify(tm, nu_ins, hmac_ins))
    {
        tm_seterror("invalid authentication");
        return cert_null;
    }
    if(!encloses(encloser->idx, encloser->next_idx, a))
    {
        tm_seterror("encloser does not actually enclose placeholder index");
        return cert_null;
    }
    if(!hash_equals(nu_encl->nu.new_root, nu_ins->nu.orig_root))
    {
        tm_seterror("NU certificates do not form a chain");
        return cert_null;
    }

    hash_t ve = hash_node(encloser);
    struct iomt_node encloser_mod = *encloser;
    encloser_mod.next_idx = a;
    hash_t veprime = hash_node(&encloser_mod);

    struct iomt_node ins;
    ins.idx = a;
    ins.next_idx = encloser->next_idx;
    memset(ins.val.hash, 0, sizeof(ins.val.hash));

    hash_t viprime = hash_node(&ins);

    if(!hash_equals(nu_encl->nu.orig_node, ve))
    {
        tm_seterror("NU certificate does not contain hash of encloser node as original node value");
        return cert_null;
    }
    if(!hash_equals(nu_encl->nu.new_node, veprime))
    {
        tm_seterror("NU certificate does not contain hash of modified encloser as new node");
        return cert_null;
    }
    if(!is_zero(nu_ins->nu.orig_node))
    {
        tm_seterror("NU certificate does not have zero for original node");
        return cert_null;
    }
    if(!hash_equals(nu_ins->nu.new_node, viprime))
    {
        tm_seterror("NU certificate does not have placeholder as new node");
        return cert_null;
    }

    /* we can now certify that y and y'' are equivalent roots */
    struct tm_cert cert;
    memset(&cert, 0, sizeof(cert));
    cert.type = EQ;
    cert.eq.orig_root = nu_encl->nu.orig_root;
    cert.eq.new_root = nu_ins->nu.new_root;

    *hmac_out = cert_sign(tm, &cert);
    return cert;
}

/* nu must be of the form [x,y,x,y] to indicate that x is a child of y */
/* also, if b > 0 and nonexist != NULL, this function will generate a
 * certificate indicating that no node with index b exists with root
 * y*/
struct tm_cert tm_cert_record_verify(const struct trusted_module *tm,
                                     const struct tm_cert *nu, hash_t hmac,
                                     const struct iomt_node *node,
                                     hash_t *hmac_out,
                                     uint64_t b,
                                     struct tm_cert *nonexist,
                                     hash_t *hmac_nonexist)
{
    if(!nu)
        return cert_null;
    if(!hash_equals(nu->nu.orig_node, nu->nu.new_node) || !hash_equals(nu->nu.orig_root, nu->nu.new_root))
        return cert_null;

    hash_t node_h = hash_node(node);
    if(!hash_equals(nu->nu.orig_node, node_h))
        return cert_null;

    /* issue a certificate verifying that no node with index b exists as a child of y */
    if(b > 0 && nonexist && hmac_nonexist)
    {
        if(encloses(node->idx, node->next_idx, b))
        {
            memset(nonexist, 0, sizeof(*nonexist));
            nonexist->type = RV;
            nonexist->rv.idx = b;

            /* not needed, already zeroed */
            //memset(nonexist->rv.val, 0, sizeof(nonexist->rv.val));

            nonexist->rv.root = nu->nu.orig_root;

            *hmac_nonexist = cert_sign(tm, nonexist);
        }
        else
            *nonexist = cert_null;
    }

    /* verify that this node is a child of y */
    struct tm_cert cert;

    memset(&cert, 0, sizeof(cert));

    cert.type = RV;
    cert.rv.root = nu->nu.orig_root;
    cert.rv.idx = node->idx;
    cert.rv.val = node->val;

    *hmac_out = cert_sign(tm, &cert);
    return cert;
}

struct tm_cert tm_cert_record_update(const struct trusted_module *tm,
                                     const struct tm_cert *nu, hash_t nu_hmac,
                                     const struct iomt_node *node,
                                     hash_t new_val,
                                     hash_t *hmac_out)
{
    if(!nu)
    {
        tm_seterror("null certificate");
        return cert_null;
    }
    if(nu->type != NU)
    {
        tm_seterror("not NU certificate");
        return cert_null;
    }
    if(!cert_verify(tm, nu, nu_hmac))
    {
        tm_seterror("improper certificate authentication");
        return cert_null;
    }

    hash_t orig_h = hash_node(node);

    struct iomt_node new_node = *node;
    new_node.val = new_val;

    hash_t new_h = hash_node(&new_node);

    if(!hash_equals(nu->nu.orig_node, orig_h) || !hash_equals(nu->nu.new_node, new_h))
    {
        tm_seterror("NU hashes do not match node hashes");
        return cert_null;
    }

    struct tm_cert cert;
    memset(&cert, 0, sizeof(cert));

    cert.type = RU;
    cert.ru.idx = node->idx;
    cert.ru.orig_val = node->val;
    cert.ru.new_val = new_val;
    cert.ru.orig_root = nu->nu.orig_root;
    cert.ru.new_root = nu->nu.new_root;

    *hmac_out = cert_sign(tm, &cert);
    return cert;
}

/* toggle the IOMT root to an equivalent root (which differs only in
 * having an extra zero placeholder) */
bool tm_set_equiv_root(struct trusted_module *tm,
                       const struct tm_cert *cert_eq, hash_t hmac)
{
    if(!cert_eq)
        return false;
    if(cert_eq->type != EQ)
        return false;
    if(!cert_verify(tm, cert_eq, hmac))
        return false;

    if(hash_equals(tm->root, cert_eq->eq.orig_root))
    {
        tm_setroot(tm, cert_eq->eq.new_root);
        return true;
    }

    if(hash_equals(tm->root, cert_eq->eq.new_root))
    {
        tm_setroot(tm, cert_eq->eq.orig_root);
        return true;
    }

    return false;
}

/* user id is 1-indexed */
hash_t req_sign(const struct trusted_module *tm, const struct user_request *req, int id)
{
    return hmac_sha256(req, sizeof(*req), tm->user_keys[id - 1].key, tm->user_keys[id - 1].len);
}

/* verify HMAC of user request */
static bool req_verify(const struct trusted_module *tm, const struct user_request *req, uint64_t id, hash_t hmac)
{
    if(id < 1 || id >= tm->n_users + 1)
        return false;
    hash_t calculated = req_sign(tm, req, id);
    return hash_equals(calculated, hmac);
}

/* Generate a signed acknowledgement for successful completion of a
 * request. We append a zero byte to the user request and take the
 * HMAC. */
static hash_t req_ack(const struct trusted_module *tm, const struct user_request *req)
{
    HMAC_CTX *ctx = HMAC_CTX_new();
    HMAC_Init_ex(ctx,
                 tm->user_keys[req->user_id - 1].key,
                 tm->user_keys[req->user_id - 1].len,
                 EVP_sha256(), NULL);

    HMAC_Update(ctx, (const unsigned char*)req, sizeof(*req));

    unsigned char zero = 0;
    HMAC_Update(ctx, &zero, 1);

    hash_t hmac;
    HMAC_Final(ctx, hmac.hash, NULL);
    HMAC_CTX_free(ctx);

    return hmac;
}

/* execute a user request, if possible */
/*
 * This function handles all transformations on the IOMT except
 * inserting a placeholder (handled above). The function takes its
 * parameter in the form of a user_request struct, which must be
 * authenticated or else the function will fail. When a request is
 * successfully completed, *ack_hmac will be updated to the value
 * HMAC(<request> + 1, K), where + denotes concatenation, and K is the
 * shared secret between the user and module. Based on the request
 * contents, one of three actions are performed:
 *
 * 1) req->type == ACL_UPDATE and req->counter == 0:
 *
 * Create a new file entry. A properly authenticated RU certificate
 * must be passed in the `create' struct of the request. The RU
 * certificate must be of the form [ f, 0, current root, 1, new root
 * ]. Additionally, the `val' field of the request struct should be
 * set to the root of the ACL IOMT (a).
 *
 * Given these parameters, this function will then update the internal
 * IOMT root to the new root and will issue an FR certificate of the
 * form [ idx = f, c_f = 1, acl = a, ver = 0 ].
 *
 * 2) req->type == ACL_UPDATE (and req->counter > 0 and access = 3):
 *
 * Three properly authenticated certificates are needed for an update
 * to the ACL: one FR certificate to indicate the ACL root, one RV
 * certificate of the form [ user_id, access, acl_root ] to indicate
 * user access level (which must be 3 in order to change the ACL), and
 * one RU certificate of the form [ f, c_f, current IOMT root, c_f +
 * 1, new IOMT root ] to indicate that the counter c_f is consistent
 * with the internally stored root and the updated IOMT root.
 *
 * Given these three certificates, this function will return an FR
 * certificate (signed in *hmac_out) with the updated ACL root, and
 * will update the internal IOMT root to increment the file counter,
 * c_f.
 *
 * 3) req->type == FILE_UPDATE (and req->counter > 0 and access >= 2):
 *
 * Three properly authenticated certificates are needed for the
 * creation of a new file version (which are also the same as the ones
 * needed for an ACL update, see above). The user access level must be
 * >= 2, otherwise this function will fail.
 *
 * This function returns two certificates: one FR certificate
 * indicating the updated file counter and version number (and an
 * unchanged ACL root), and a new VR certificate, returned in *vr_out
 * and signed in *vr_hmac. Additionally, the internal IOMT root will
 * be updated to reflect the incremented file counter.
 */
struct tm_cert tm_request(struct trusted_module *tm,
                          const struct user_request *req, hash_t req_hmac,
                          hash_t *hmac_out,
                          struct tm_cert *vr_out, hash_t *vr_hmac,
                          hash_t *hmac_ack)
{
    if(!req)
    {
        tm_seterror("null request");
        return cert_null;
    }
    if(!req_verify(tm, req, req->user_id, req_hmac))
    {
        tm_seterror("improper authentication");
        return cert_null;
    }

    /* invalid request type */
    if(req->type != ACL_UPDATE && req->type != FILE_UPDATE)
    {
        tm_seterror("invalid request type");
        return cert_null;
    }

    /* file creation */
    if(req->type == ACL_UPDATE && req->counter == 0)
    {
        /* We must verify that no file exists with the requested
         * index by checking that we have a valid RU certificate
         * showing that updating the record with index `f' from 0
         * to 1 changes the IOMT root from the stored root (in the
         * TM) to a different root */

        /* we treat the hash like a 256-bit little-endian counter */
        hash_t one = u64_to_hash(1);

        /* first check the validity of the certificate */
        if(!cert_verify(tm, &req->create.ru_cert, req->create.ru_hmac))
        {
            tm_seterror("RU cert invalid");
            return cert_null;
        }

        /* verify that:
           - the certificate has the same file index as the request
           - the original value for the record is zero (a placeholder)
           - the original root matches the current IOMT root stored in the module
           - the new value is the value 1
        */
        if(req->create.ru_cert.ru.idx != req->idx ||
           !is_zero(req->create.ru_cert.ru.orig_val)   ||
           !hash_equals(req->create.ru_cert.ru.orig_root, tm->root) ||
           !hash_equals(req->create.ru_cert.ru.new_val, one))
        {
            tm_seterror("RU cert does not show needed information");
            printf("%d %d %d %d\n", req->create.ru_cert.ru.idx != req->idx,
                   !is_zero(req->create.ru_cert.ru.orig_val),
                   !hash_equals(req->create.ru_cert.ru.orig_root, tm->root),
                   !hash_equals(req->create.ru_cert.ru.new_val, one));
            dump_hash(req->create.ru_cert.ru.orig_root);
            dump_hash(tm->root);
            return cert_null;
        }

        /* update the IOMT root */
        tm_setroot(tm, req->create.ru_cert.ru.new_root);

        /* issue an FR certificate */
        struct tm_cert cert;
        cert.type = FR;
        cert.fr.idx = req->idx;
        cert.fr.counter = req->counter + 1;
        cert.fr.version = 0;
        cert.fr.acl = req->val;

        *hmac_out = cert_sign(tm, &cert);
        *hmac_ack = req_ack(tm, req);
        return cert;
    }

    /* Otherwise the request is to either modify the ACL or create a
     * new file version. In either case, check the three certificates
     * (to verify ACL and access privilege). */
    if(req->counter <= 0)
    {
        tm_seterror("invalid counter");
        return cert_null;
    }
    if(!cert_verify(tm, &req->modify.fr_cert, req->modify.fr_hmac))
    {
        tm_seterror("FR certificate improperly authenticated");
        return cert_null;
    }
    if(!cert_verify(tm, &req->modify.rv_cert, req->modify.rv_hmac))
    {
        tm_seterror("RV certificate improperly authenticated");
        return cert_null;
    }
    if(!cert_verify(tm, &req->modify.ru_cert, req->modify.ru_hmac))
    {
        tm_seterror("RU certificate improperly authenticated");
        return cert_null;
    }

    /* check that FR and RU certificate indices match request index */
    if(req->modify.fr_cert.fr.idx != req->idx ||
       req->modify.ru_cert.ru.idx != req->idx)
    {
        tm_seterror("either FR or RU certificate indices do not match request index");
        return cert_null;
    }

    /* Check that the file counter is consistent with the stored root
     * and the counter in the request. Also check that the FR
     * certificate's counter matches that of the request. */
    if(!hash_equals(req->modify.ru_cert.ru.orig_root, tm->root) ||
       hash_to_u64(req->modify.ru_cert.ru.orig_val) != req->counter ||
       req->modify.fr_cert.fr.counter != req->counter)
    {
        tm_seterror("RU certificate does not correspond to stored root; or FR counter does not match request counter");
        return cert_null;
    }

    /* check that the RU certificate corresponds to an increment of
     * the counter value. */
    if(hash_to_u64(req->modify.ru_cert.ru.orig_val) + 1 != hash_to_u64(req->modify.ru_cert.ru.new_val))
    {
        tm_seterror("RU does not reflect incrementing counter value");
        return cert_null;
    }

    /* check access level using RV cert, which verifies a record in
     * the ACL tree. */
    if(!hash_equals(req->modify.fr_cert.fr.acl, req->modify.rv_cert.rv.root))
    {
        tm_seterror("RV certificate does not match ACL given in file record");
        return cert_null;
    }
    if(req->modify.rv_cert.rv.idx != req->user_id)
    {
        tm_seterror("RV certificate has wrong user id");
        return cert_null;
    }

    /* we treat the first 8 bytes of the counter as a little-endian
     * integer counter */
    uint64_t access = hash_to_u64(req->modify.rv_cert.rv.val);

    /* no write access to file or ACL */
    if(access < 2)
    {
        tm_seterror("user has insufficient permissions");
        return cert_null;
    }

    /* file update */
    if(req->type == FILE_UPDATE)
    {
        /* We need to issue a VR certificate indicating the new
         * version's contents, and an FR certificate with the new
         * version number. */
        struct tm_cert fr_cert, vr_cert;
        fr_cert.type = FR;
        fr_cert.fr.idx = req->idx;
        fr_cert.fr.counter = req->counter + 1;
        fr_cert.fr.version = req->modify.fr_cert.fr.version + 1;
        fr_cert.fr.acl     = req->modify.fr_cert.fr.acl;

        *hmac_out = cert_sign(tm, &fr_cert);

        vr_cert.type = VR;
        vr_cert.vr.idx = req->idx;
        vr_cert.vr.version = req->modify.fr_cert.fr.version + 1;
        vr_cert.vr.hash = req->val;

        *vr_hmac = cert_sign(tm, &vr_cert);
        *vr_out = vr_cert;

        tm_setroot(tm, req->modify.ru_cert.ru.new_root);

        *hmac_ack = req_ack(tm, req);

        return fr_cert;
    }
    else if(req->type == ACL_UPDATE)
    {
        /* We just need a new FR certificate with the new ACL. */
        struct tm_cert cert;
        cert.type = FR;
        cert.fr.idx = req->idx;
        cert.fr.counter = req->counter + 1;
        cert.fr.version = req->modify.fr_cert.fr.version;
        cert.fr.acl = req->val;

        *hmac_out = cert_sign(tm, &cert);

        tm_setroot(tm, req->modify.ru_cert.ru.new_root);
        *hmac_ack = req_ack(tm, req);
        return cert;
    }

    /* should not get here */
    assert(false);
}

/* enc_secret is encrypted by the user by XOR'ing the file encryption
 * key with h(f + c_f + K), where + denotes concatenation. The purpose
 * of this function is to decrypt the secret passed by the user,
 * verify its integrity against kf=HMAC(secret, key=f_idx), and then
 * re-encrypt the secret with the module's secret key. This is the
 * F_rs() function described by Mohanty et al. */

/* Untested. */
hash_t tm_verify_and_encrypt_secret(const struct trusted_module *tm,
                                    uint64_t file_idx,
                                    uint64_t file_counter,
                                    uint64_t user_id,
                                    hash_t encrypted_secret, hash_t kf)
{
    hash_t pad; /* key = encrypted_secret ^ pad */
    HMAC_CTX *ctx = HMAC_CTX_new();
    HMAC_Init_ex(ctx, tm->user_keys[user_id - 1].key, tm->user_keys[user_id - 1].len,
                 EVP_sha256(), NULL);

    HMAC_Update(ctx, (const unsigned char*)&file_idx, sizeof(file_idx));
    HMAC_Update(ctx, (const unsigned char*)&file_counter, sizeof(file_counter));

    HMAC_Final(ctx, pad.hash, NULL);
    HMAC_CTX_free(ctx);

    hash_t key = hash_xor(encrypted_secret, pad);

    if(hash_equals(kf,
                   hmac_sha256(key.hash, sizeof(key.hash),
                               &file_idx, sizeof(file_idx))))
    {
        /* re-encrypt */
        pad = hmac_sha256(kf.hash, sizeof(kf.hash),
                          tm->secret, sizeof(tm->secret));

        return hash_xor(key, pad);
    }

    /* failure */
    return hash_null;
}

/* Decrypt a previously encrypted secret, and then encrypt for receipt
 * by a user. rv1 should bind the file index and counter to the
 * current root. rv2 should verify the user's access level in the
 * ACL. The index (which is a user id) given in rv2 will select the
 * key used to encrypt the secret. As with
 * tm_verify_and_encrypt_secret(), kf=HMAC(secret, key=f_idx). */

/* Untested. */
hash_t tm_retrieve_secret(const struct trusted_module *tm,
                          const struct tm_cert *rv1, hash_t rv1_hmac,
                          const struct tm_cert *rv2, hash_t rv2_hmac,
                          const struct tm_cert *fr, hash_t fr_hmac,
                          hash_t secret, hash_t kf)
{
    if(!rv1 || !rv2 || !fr)
    {
        tm_seterror("null certificate");
        return hash_null;
    }

    if(!cert_verify(tm, rv1, rv1_hmac) ||
       !cert_verify(tm, rv2, rv2_hmac) ||
       !cert_verify(tm, fr, fr_hmac))
    {
        tm_seterror("certificate not authenticated");
        return hash_null;
    }

    if(rv1->type != RV ||
       rv2->type != RV ||
       fr->type != FR)
    {
        tm_seterror("wrong certificate type");
        return hash_null;
    }

    if(rv1->rv.idx != fr->fr.idx)
    {
        tm_seterror("RV1 index does not match file index");
        return hash_null;
    }
    if(hash_to_u64(rv1->rv.val) != fr->fr.counter)
    {
        tm_seterror("counter given by RV1 does not match counter in FR");
        return hash_null;
    }
    if(!hash_equals(rv1->rv.root, tm->root))
    {
        tm_seterror("RV1 root does not match internal root");
        return hash_null;
    }
    if(!hash_equals(rv2->rv.root, fr->fr.acl))
    {
        tm_seterror("RV2 root does not match ACL root");
        return hash_null;
    }

    uint64_t access = hash_to_u64(rv2->rv.val);
    if(access < 1)
    {
        tm_seterror("insufficient permissions");
        return hash_null;
    }

    hash_t pad = hmac_sha256(kf.hash, sizeof(kf.hash),
                             tm->secret, sizeof(tm->secret));

    /* decrypt */
    secret = hash_xor(secret, pad);

    /* verify that kf=HMAC(secret, file_idx) */
    if(!hash_equals(kf, hmac_sha256(secret.hash, sizeof(secret.hash),
                                    &rv1->rv.idx, sizeof(rv1->rv.idx))))
    {
        tm_seterror("secret integrity not confirmed");
        return hash_null;
    }

    /* now re-encrypt for conveyance to user by XOR'ing with HMAC(kf, user_key) */
    pad = hmac_sha256(kf.hash, sizeof(kf.hash),
                      tm->user_keys[rv2->rv.idx - 1].key,
                      tm->user_keys[rv2->rv.idx - 1].len);
    return hash_xor(secret, pad);
}

/* self-test */
const char *tm_geterror(void);
void check(int condition)
{
    printf(condition ? "\033[32;1mPASS\033[0m\n" : "\033[31;1mFAIL\033[0m\n");
    if(!condition)
        printf("%s\n", tm_geterror());
}

void tm_test(void)
{
    {
        /* test merkle tree with zeros */
        hash_t zero1, zero2;
        memset(zero1.hash, 0, sizeof(zero1.hash));
        memset(zero2.hash, 0, sizeof(zero2.hash));
        int orders[] = { 0 };

        /* this should return zero */
        hash_t res1 = merkle_compute(zero1, &zero2, orders, 1);
        printf("Merkle parent with zeros: ");
        check(is_zero(res1));

        hash_t a = sha256("a", 1);
        hash_t b = sha256("b", 1);
        hash_t c = sha256("c", 1);
        hash_t d = sha256("d", 1);
        hash_t cd = merkle_parent(c, d, 0);
        //dump_hash(cd);
        char buf[64];
        memcpy(buf, c.hash, 32);
        memcpy(buf + 32, d.hash, 32);
        //dump_hash(sha256(buf, 64));
        printf("Merkle parent: ");
        check(hash_equals(sha256(buf, 64), cd));

        hash_t a_comp[] = { b, cd };
        int a_orders[] = { 1, 1 };
        hash_t root1 = merkle_compute(a, a_comp, a_orders, 2);

        hash_t ab = merkle_parent(a, b, 0);
        hash_t root2 = merkle_parent(ab, cd, 0);
        //dump_hash(root1);
        //dump_hash(root2);
        printf("Merkle compute: ");
        check(hash_equals(root1, root2));
    }

    {
        /* check NU certificate generation */
        struct trusted_module *tm = tm_new("a", 1);

        hash_t node = sha256("a", 1);
        hash_t node_new = sha256("b", 1);
        hash_t comp[] = { sha256("b", 1) };
        int orders[] = { 1 }; /* complementary node is right child */
        hash_t root_1, root_2, root_3;
        root_1 = merkle_compute(node, comp, orders, 1);
        root_2 = merkle_compute(node_new, comp, orders, 1);

        hash_t hmac;
        struct tm_cert nu = tm_cert_node_update(tm, node, node_new, comp, orders, 1, &hmac);
        printf("NU generation: ");
        check(nu.type == NU &&
              hash_equals(nu.nu.orig_node, node) &&
              hash_equals(nu.nu.orig_root, merkle_compute(node, comp, orders, 1)) &&
              hash_equals(nu.nu.new_node, node_new) &&
              hash_equals(nu.nu.new_root, merkle_compute(node_new, comp, orders, 1)));
        printf("Certificate verification 1: ");
        check(cert_verify(tm, &nu, hmac));
        hash_t bogus = { { 0 } };
        printf("Certificate verification 2: ");
        check(!cert_verify(tm, &nu, bogus));

        /* test combining NU certificates */
        hash_t node_3 = sha256("c", 1);
        root_3 = merkle_compute(node_3, comp, orders, 1);
        hash_t hmac2, hmac_cat;
        struct tm_cert nu2 = tm_cert_node_update(tm, node_new, node_3, comp, orders, 1, &hmac2);
        struct tm_cert cat = tm_cert_combine(tm, &nu, hmac, &nu2, hmac2, &hmac_cat);
        printf("Combine NU certificates: ");
        check(nu2.type == NU &&
              cat.type == NU &&
              hash_equals(cat.nu.orig_root, root_1) &&
              hash_equals(cat.nu.orig_node, node) &&
              hash_equals(cat.nu.new_root, root_3) &&
              hash_equals(cat.nu.new_node, node_3) &&
              cert_verify(tm, &cat, hmac_cat));

        //tm_free(tm);
    }

    {

    }
}